Survey of Tern Activity Within Nantucket Sound, Massachusetts, During Pre-Migratory Fall Staging

Final Report for Massachusetts Technology Collaborative

8 January 2003

Simon Perkins, Andrea Jones, and Taber Allison Division of Conservation Science and Ecological Management Massachusetts Audubon Society 208 South Great Road Lincoln, MA 01773

INTRODUCTION

A proposed wind farm on Horseshoe Shoals in Nantucket Sound would be the largest in the United States and one of the largest in the world. Few if any data are available to assess the potential risks to North American birds posed by this offshore wind farm. A survey of terns and waterfowl in Nantucket Sound is a critical step in assessing the potential avian impacts of the proposed wind farm's construction and deployment.

Several of the largest tern colonies in New England are found within 20 miles of Horseshoe Shoals. Approximately 50% of the North American population of Roseate Terns breeds within Buzzards Bay in Massachusetts (USFWS 1998), and in 2001, 7812 pairs of Common Terns nested at Monomoy Island NWR, Chatham (Blodget, 2001). Common and Roseate terns forage within or pass through the Sound between early May and late September as they move to and from their colonies, foraging areas, and staging sites. Little is known about the actual abundance, dispersal, and daily movements of these terns during migration. In addition, the areas where they focus their feeding activities both within the breeding season and during spring and fall migration are poorly known.

In an effort to fill some of these data gaps, we conducted aerial surveys of Nantucket Sound between August 19 and September 19, 2002. The primary objectives of this study were to ascertain the abundance and distribution of Common and Roseate terns within the Sound during fall migration and staging and to detect any temporal variation in these parameters. During this same period, we conducted four boat surveys in the waters on, and in the immediate vicinity of, Horseshoe Shoals in an effort to observe the behaviors of the terns (e.g., traveling or actively feeding) and determine the heights at which the birds were flying.

The timing of the tern survey was based on the hypothesis that Common and Roseate terns approach their maximum abundance within the Sound in late summer as they move from their breeding colonies and summer feeding grounds to their primary pre-migration staging areas on or near South Beach in Chatham (Trull et al. 1999). For example, previous surveys of staging birds in Chatham have produced estimates of up to 7,000 Roseate Terns in early September (Veit and Petersen, 1993). Higher totals of Roseate Terns in September (e.g., 15,000) published in Bird Observer (1984) and cited by Trull (1999) actually refer to mixed flocks of Common and Roseate terns and the ratios of these flocks were not recorded (B. Nikula pers. comm.). Color-banding studies have demonstrated that the Roseate Terns that stage in Chatham come from colonies throughout the northeastern United States and Canadian Maritimes as well as from Massachusetts colonies, and that, every year, these late-summer congregations may comprise nearly the entire North American population (Trull et al. 1999).

Initially, our study was intended to cover the period between early August and the approximate date when most of the terns would depart on their southbound migration. In most years this exodus typically occurs in the third week of September (S. Hecker

pers. comm.). Because we did not receive notification of funding until early August, we did not begin our aerial surveys until August 19.

METHODS

Aerial Surveys

Aerial surveys were conducted along sixteen fixed, parallel transects oriented north to south. This grid encompassed nearly all the waters south of Cape Cod between Martha's Vineyard and the Monomoy Island NWR in Chatham; the transects extended south to an east-west line roughly even with Great Point, Nantucket (Fig. 1). Individual transects were positioned at 7,500 foot intervals, and the total combined linear length of all 16 transects was 247.4 miles. The length of the longest transect was 18.2 miles, the shortest was 4.5, and the mean length of all sixteen transects was 15.4 miles (Fig. 1).

Aerial surveys were flown with a high-winged, twin-engine aircraft (Cessna Sky Master 337) at an average altitude of 500 feet, and at an average airspeed of 90 kts. Flights were conducted only on days with light to moderate winds (not exceeding 20-25 kts) and on days with good atmospheric clarity (visibility >10 miles). Flights usually commenced mid morning and the average duration of each survey was roughly 2.5 hrs. We recorded all birds seen along or on either side of the north-south transects out to a distance estimated to be roughly 3500 feet on each side of the plane, a distance approximately half way between adjacent transects. Some individual birds were detected and identified only with the aid of binoculars. Other non-avian species, such as sea turtles, were also recorded. We did not count any species observed while we were flying the short, east-west legs between transects.

Common and Roseate terns were distinguished by their different flight behavior and plumage characteristics. We recorded all birds to species whenever possible, but it was not possible to always differentiate between the Roseate and Common terns. When we could not distinguish between the two species, we lumped our observations into the category of Roseate/Common Tern (Tern spp.).

Each survey team was composed of a pilot, a recorder in the co-pilot seat, and two experienced observers. The two observers were positioned opposite one another on each side of the plane. All members of the team communicated through an onboard intercom system. The observers verbally communicated all bird sightings to the recorder. The recorder immediately entered this information and the geographical location of the plane at the time of each sighting into an Excel spreadsheet on a laptop computer; geographical location was determined using an onboard Global Positioning System (GPS). Recorded information included all species, number of birds, and their behavior (traveling or actively feeding). We also recorded starting and ending times, ground temperature, wind direction and velocity, sea state, visibility, and cloud cover for each transect on every survey. Surveys were conducted over a wide range of tidal stages.

Boat surveys

We conducted four boat surveys along a series of transects oriented in two approximately parallel tracks, one mile apart; the position of these transects were selected in order to "capture" all the waters over Horseshoe Shoals as well as the waters in the immediate vicinity of the Shoals (see Fig. 1). Surveys were conducted using a 40 ft powerboat, cruising at an average speed of roughly 15 kts. Surveys lasted approximately 1.5 hours. The total linear length of all transects was 24.9 miles. The survey teams consisted of at least one observer and one recorder, and data collected included all bird species, their numbers, and their flight altitudes, and starting and ending time, weather (e.g., rain, sunny, cloudy), wind speed and direction, temperature, sea state, and visibility. For each bird sighted, the recorder entered a corresponding geographical location determined by an onboard GPS system. All birds observed within approximately 0.5 miles on either side of the transects were recorded. Observers used binoculars whenever necessary.

RESULTS

Aerial Surveys

Eleven aerial surveys were completed before the majority of birds departed on or around September 19. During this period, we observed 5,721 terns in the study area including 1,767 Common Terns, 634 Roseate Terns, and 3,311 Common-Roseate-type terns (Table 1).

Terns were recorded on all aerial surveys. The highest single-day count of 1,302 birds was recorded on August 26, and the second highest count of 1,089 birds was recorded on September 9 (Fig. 2). Common Terns were recorded more frequently than Roseate Terns (Fig. 3). On the last survey, September 19, only one Common Tern was recorded. Transect number 16 (closest to Monomoy Island NWR) (see Figs.1 and 4) contained the largest counts of terns over the course of the study period. The numbers of terns recorded on any given day tended to increase as we approached Monomoy Island NWR, and this distributional pattern became increasingly prevalent during the latter surveys when, in the final few days, the birds began departing the region on migration (Figs. 4, 6-9). Tern abundance also tended to be higher within a few miles of the southern shore of Cape Cod, in the northern portion of our survey area, while relatively few terns were detected directly over Horseshoe Shoals (see Figs. 6-9).

Over the survey period, the majority (59.4%) of birds were seen close to Monomoy Island within transects 14-16; 40.6% were counted within transects 1-13. Among the 1,767 Common Terns counted over the entire survey period, 57.2% were diving/feeding, 39.2% were flying, and 3.6% were resting. Of the 634 Roseate Terns counted, 59.0% were diving/feeding, 39.0% were flying, and 2.0% were resting. Of the 3,433 Common/Roseate type terns counted, 35.0% were diving/feeding, 46.8% were flying, and 18.1% were resting. All resting birds were sighted near Monomoy Island, where they were standing on exposed sandbars. An analysis of terns recorded only in transects 1-13 (i.e., excluding transects 14-16 which traversed shallow water close to Chatham's staging, feeding, and resting areas) revealed a much lower percentage of actively feeding birds as compared to the percentage of feeding birds recorded over all sixteen transects. Of 737 Common Terns counted within transects 1-13, 29.4% were diving/feeding, 62.7% were flying, and 7.9% were resting. Of 127 Roseate Terns counted in this area, 27.6% were diving/feeding, and 72.4% were flying. Of 1,504 Common/Roseate type terns, 45.4% were diving/feeding, and 54.6% were flying.

The majority of birds observed during aerial surveys were flying at low altitudes (estimated at less than 100 feet) over the water. On August 28, however, several flocks of terns were detected high aloft. One flock composed of an estimated 120 terns extended from roughly sea level to an altitude equal to or slightly above our own (500 feet). This flock was recorded along transect 11 (coordinates 41° 28' 34" N; 70° 8' 53" W). In another flock of 18 Common Terns recorded along transect 13, three birds were observed at roughly 400 feet (coordinates 41° 32' 22" N; 70° 5' 26" W). The birds appeared to be "kettling" on thermals, but why they were found aloft on that day and not on other days is unknown. During the same time, we also observed a flock of 25 Double-crested Cormorants flying at roughly 500 feet, apparently migrating. Other avian species observed during aerial flights included loons, storm-petrels, gannets, sea ducks, jaegers, gulls, and shorebirds (see Table 2).

A cumulative total of 34 sea turtles were observed (Table 3). We recorded turtles on nine of the eleven aerial surveys. The turtles were distributed throughout the Sound, including several on Horseshoe Shoals (Fig. 10), although most were loosely clustered in an area to the west of the south end of Monomoy Island NWR, Chatham.

Boat surveys

Four boat surveys were conducted, spaced throughout the study period: August 21 and 26, and September 6 and 20. A combined total of 42 terns were observed directly over Horseshoe Shoals (Table 4) on Aug. 21 and 26; no terns were sighted on the latter two surveys. Of the terns seen, 19 were observed in direct flight (traveling) and 23 were actively feeding within the shoals. The altitude range of all observed terns was between 5 and 50 feet high. Four other avian species were observed during boat surveys (Table 5). Three boat surveys were conducted concurrently with aerial surveys, but ground-truthing efforts by means of establishing radio or cell phone communications between the plane and the boat in attempts to correlate simultaneous observations failed.

DISCUSSION

The majority of terns recorded during this study were observed near Monomoy Island NWR or the south shore of Cape Cod. Fewer terns were seen on Horseshoe Shoals indicating that the Shoals were used less frequently than other portions of the Sound during this survey window. Our results suggest that a) Horseshoe Shoals may not be a primary feeding location for terns during the time period of our survey; b) numbers of terns staging at Chatham this year were substantially lower than average; and/or c) because of the late start of our surveys the birds had already dispersed to their staging areas and were foraging elsewhere.

Our observations of tern activity suggest that, during this survey window, feeding activity is concentrated near staging areas in Chatham. Terns were feeding in the Sound, but most birds seen may have been flying through the sound to feeding sites located nearer the staging area. Very few data have been collected on tern use of Nantucket Sound. Heinemann (1992) reported that feeding sites of Roseate Terns foraging from their colonies in Buzzards Bay included portions of Nantucket Sound. During their feeding forays, the terns ranged up to roughly 20 miles from their colonies (Gochfeld et. al. 1998).

In recent years, tern totals derived from various land-based counts at South Beach in Chatham have numbered in the tens of thousands (e.g., Trull et al. 1999). For reasons yet unknown, data from this study, as well as data collected concurrently during land-based counts in Chatham, indicated that the numbers of terns at South Beach during the survey period were much lower than usual. For example, maximum counts among land-based surveys by local birders included 800 Roseate Terns and 3000 Common Terns (Bird Observer) at South Beach in late August 2002. No such systematic counts of Common Terns were submitted in September (when numbers typically peak) due to the lower-than-normal numbers of birds found there (P. Flood, B. Nikula, pers. comm.) In past years, >20,000 Common/Roseate-type terns have been estimated in Chatham during August and September (e.g., Gove, et al. 1984).

The west-to-east shift in tern abundance that we observed during the survey period may have been attributable to the terns' tendency to spend increasing amounts of time at or near their staging sites near Chatham as their migratory departure date drew near. The attraction to Chatham is thought to be due, in part, to the presence of numerous sandbars, the shallows they create, and the favorable fishing conditions these bathymetric features produce. Likewise, the clustering of terns in the northern portion of the survey area was likely related to terns' preference for feeding in the Sound's shallower margins.

We had hoped to begin our surveys in early August, more than two weeks earlier than our start date, to observe tern use of Nantucket Sound through the entire staging period. The effect of this late start on the east-west distribution of tern sights and on our assessment of tern activity in the Sound is unknowable at present. We plan to begin 2003 surveys in April and continue through mid-September to obtain a more complete understanding of the use of Nantucket Sound and Horseshoe Shoals by terns. We believe that adequate assessment of the use of the Sound by terns will require at least three years of surveys, during spring migration, the breeding season, and through the full staging period. For example, tern distribution may shift annually as a function of shifts in the local distribution of fish, and the fish distribution may in turn be influenced by factors such as annual variations in water temperatures. A minimum of a three-year study period may enable us to detect these annual variations and to distinguish between alternative explanations for the patterns that we have observed.

REFERENCES CITED

- Blodget, B. G. 2001. Massachusetts Tern Inventory. Massachusetts Division of Fisheries and Wildlife, Westborough, MA. Unpublished report and personal communication.
- Gove, G. W., R. H. Stymiest, and L. E. Taylor. 1984. Field Records September 1984. Bird Observer of Eastern Massachusetts 12 (6): 337-350.
- Gochfeld, M., J. Burger, and I. C. T. Nisbet. 1998. Roseate Tern (*Sterna dougallii*). *In* The Birds of North America, No. 370 (A. Poole and F. Gill, eds.). The Birds of North America, Inc., Philadelphia, PA.
- Heinemann, D. 1992. Foraging Ecology of Roseate Terns on Bird Island, Buzzards Bay, Massachusetts. Unpublished Report to U. S. Fish and Wildlife Service, Newton Corner, MA.
- Trull P., S. Hecker, M.J. Watson & I.C.T. Nisbet. 1999. Staging of Roseate Terns *Sterna dougallii* in post-breeding period around Cape Cod, Massachusetts, USA. Atlantic Seabirds 1(4): 145-158.
- U.S. Fish and Wildlife Service. 1998. Roseate Tern Recovery Plan: Northeastern population, First Update. USFWS, Hadley, MA.
- Veit, R. R., and W. R. Petersen. 1993. Birds of Massachusetts. Massachusetts Audubon Society, Lincoln, MA.

ACKNOWLEDGEMENTS

We are grateful to Ambroult Aviation and pilots John Ambroult and Chan Lofland for flying the planes. Wayne Kurker located a vessel for the nautical surveys, and Captain Francis O'Neil donated his charter services. We are thankful to Margo Zdravkovic and Gene Albanese for assisting in data collection and volunteers Jeff Collins, Bethany Ericson, Sharon Hood, Tom Maloney, and Carolyn Mostello for recording data on aerial surveys. We thank Scott Hecker for providing insights on methodology, tern ecology, and assisting with surveys. We are extremely grateful to Jeff Collins for providing support and training in GIS analysis. We are grateful to Massachusetts Technology Collaborative for providing the funding for this survey. Vernon Lang and George Haas of the U. S. Fish and Wildlife Service, and Drs. P. A. Buckley, Jeremy Hatch, Ian Nisbet, and Richard Veit provided advice on methodologies, as did Jeff Berm of Environmental Science Services. Marj Rines and Blair Nikula provided additional tern data. Table 1. Numbers of Common, Roseate, and Least terns, and Tern spp. (Common/Roseate type) counted during aerial surveys of Nantucket Sound, Aug. 19 – Sept. 19, 2002.

D 4 T E	Common	Roseate	-	Least	ALL
DATE	Tern	Tern	Tern spp.	Tern	TERNS
19-Aug-02	0	92	534	1	627
21-Aug-02	0	7	977	0	984
26-Aug-02	438	193	671	1	1,303
28-Aug-02	332	29	460	0	821
5-Sep-02	24	17	149	1	191
6-Sep-02	43	10	172	5	230
7-Sep-02	87	18	329	0	434
9-Sep-02	825	260	3	1	1,089
13-Sep-02	10	7	14	0	31
18-Sep-02	6	0	3	0	9
19-Sep-02	1	0	0	0	1
TOTALS	1,767	634	3,311	9	5,721

Table 2. Number of individuals of other species of birds observed during aerial surveys
of Nantucket Sound, Aug. 19 – Sept. 19, 2002.

Species	Number
Northern Gannet	13
Double-crested Cormorant	2,702
Common Eider	8
White-winged Scoter	14
American Oystercatcher	4
Laughing Gull	22
Bonaparte's Gull	5
Herring Gull	198
Great Black-backed Gull	290
Black Tern	4
Gull species	199
Jaeger species	2
Loon species	1
Shorebird Species	154
Wilson's Storm Petrel	7
Grand Total	3,623

Table 3. Non-avian species observed during aerial surveys of Nantucket Sound, Aug. 19 – Sept. 19, 2002.

Species	Number
Large sea turtle - unidentified species	20
Kemp Ridley's Sea Turtle	1
Leatherback Sea Turtle	8
Loggerhead Sea Turtle	5
Ocean Sunfish	4
Seals	5

Table 4. Numbers and altitudes of Common and Roseate terns and Tern spp. (Common/Roseate type) counted during boat surveys on Horseshoe Shoals, Aug. 19 – Sept. 19, 2002.

Date	Number	Species	Altitude (ft.)
21-Aug-02	11	Common Tern	5-30
	1	Common Tern	1
	4	Common Tern	0-5
28-Aug-02	14	Common Tern	10-50
	1	Roseate Tern	10
	11	Tern spp.	15-50
6-Sep-02	0	No terns seen.	
6-Sep-02 20-Sep-02	0	No terns seen.	
TOTAL	42		

Table 5. Species and number of other birds observed during boat surveys of Horseshoe Shoals, Aug. 19 – Sept. 19, 200.

Date	Number	Species	Altitude (ft.)
28-Aug-02	1	Wilson's Storm-Petrel	2
6-Sep-02	11	Double-crested Cormorant	0-30
6-Sep-02	4	Herring Gull	0-30
6-Sep-02	15	White-winged Scoter	20

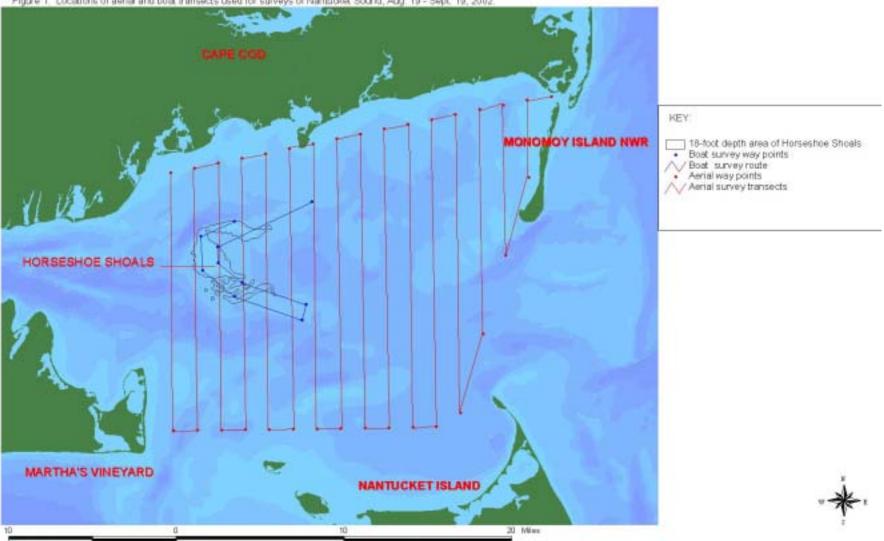


Figure 1. Locations of aerial and boat transects used for surveys of Nantucket Sound, Aug. 19 - Sept. 19, 2002.

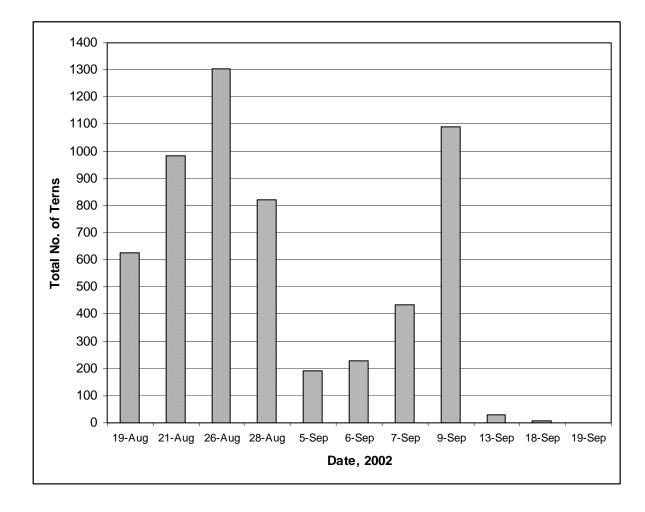


Figure 2. Total numbers of all terns counted during aerial surveys over Nantucket Sound, Aug. 19 – Sept. 19, 2002.

Figure 3. Total numbers of Common/Roseate type terns, Roseate Terns, and Least Terns counted during aerial surveys over Nantucket Sound, Aug. 19 – Sept. 19, 2002.

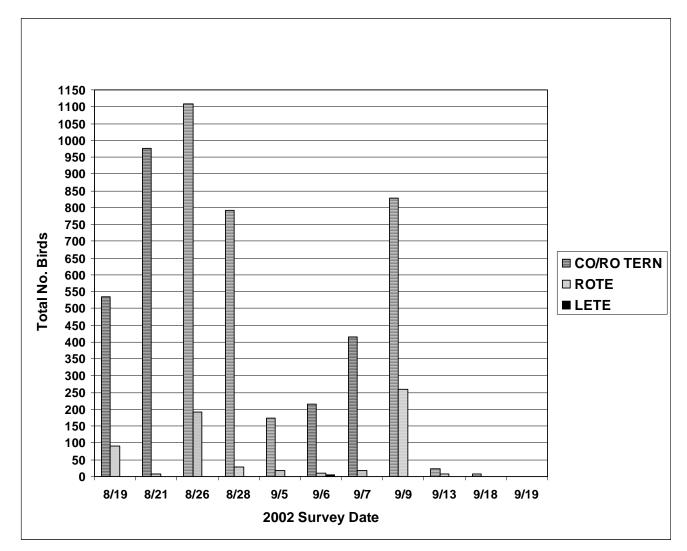


Figure 4. Total number of terns counted across each aerial transect line within Nantucket Sound on 11 survey days, from Aug. 19 – Sept. 19, 2002.

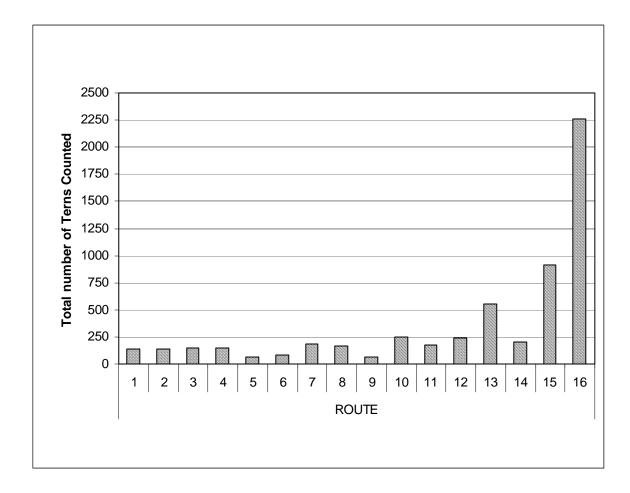


Figure 5. Number of terns counted on each aerial transect over Nantucket Sound, by date, from Aug. 19 – Sept. 19, 2002.

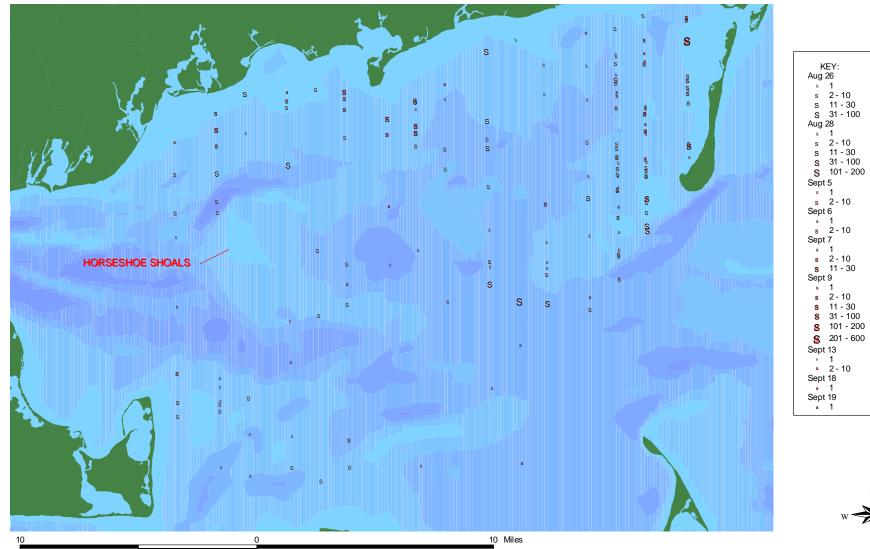


Figure 6. Numbers, dates, and locations of Common Terns observed during aerial surveys of Nantucket Sound, Aug. 19 - Sept. 19, 2002.

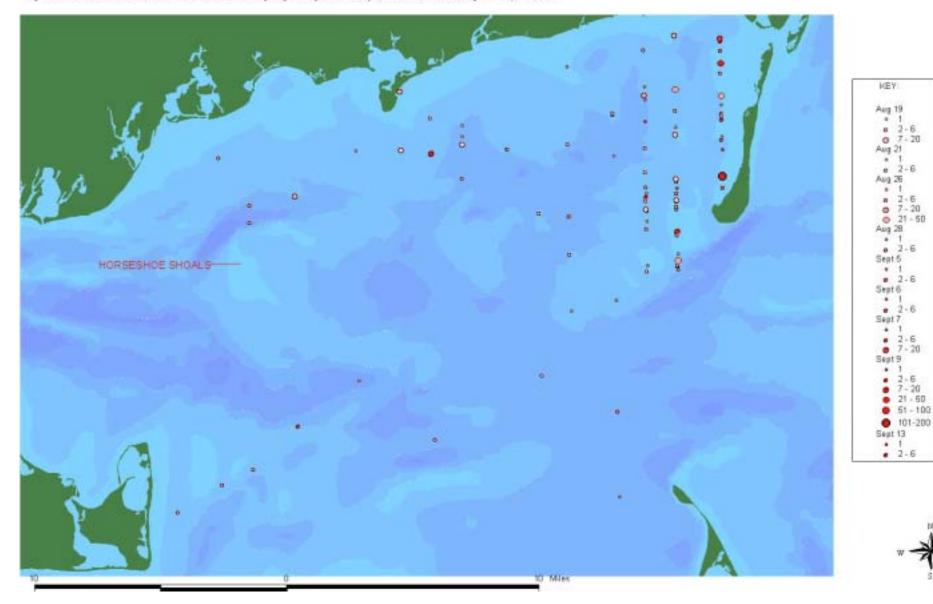


Figure 7. Locations, numbers, and dates of Hoseate Tem sightings during aerial surveys of Nantuckel Sound, Aug. 19 - Sept. 19, 2002.

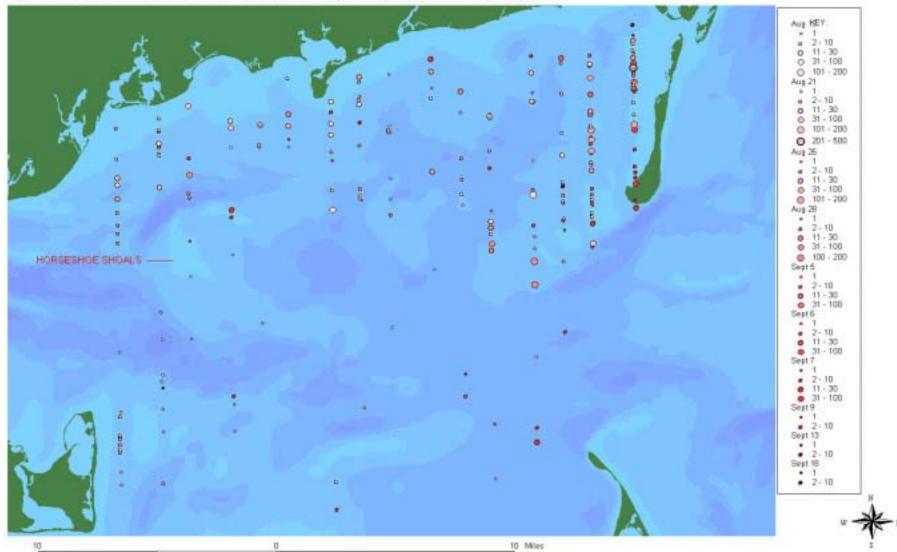


Figure 8: Numbers, dates, and locations of Common/Noneste type terms observed during aerial surveys of Nantucket Sound, Aug. 19 - Sept. 19, 2002.

Figure 9. Numbers, dates, and locations of Least Terms observed during serial surveys of Nertucket Sound, Aug. 19 - Sept. 19, 2002.

Figure 10. Locations of sea turtle sightings during aerial surveys of Nantucket Sound, Aug. 19 - Sept. 19, 2002.

