Greening Your Community Cost-effective LID solutions

restore

protect

save money

Worcester, MA September 30, 2015

Stefanie Covino, Mass Audubon scovino@massaudubon.org

This project was funded by an agreement (CE96184201) awarded by the Environmental Protection Agency to the New England Interstate Water Pollution Control Commission on behalf of the Narragansett Bay Estuary Program.

Overview

- CMRPC: Welcome & Technical Assistance
- Mass Audubon's Shaping: Introduction of problem and solutions
- Blackstone River Coalition: Water quality monitoring
- Horsley Witten: Case study review
- Wrap up & questions

What is Low Impact Development?

6 LID is an approach to land development (or re-development) that works with nature to manage stormwater as close to its source as possible. LID employs principles such as preserving and recreating natural landscape features, minimizing effective imperviousness to create functional and appealing site drainage that treat stormwater as a resource rather than a waste product. 99

What's The Problem?

Everywhere we develop, we reduce our resilience

We Need to Change Course

The Value of Green: Impervious, Runoff, Nutrients

Source: Harvard Forest Changes to the Land 2014

If we continue to follow opportunistic growth, in 2060:

If we value forests as infrastructure, in 2060:

The Value of Green: Reducing Runoff

Source: Harvard Forest Changes to the Land 2014

Ву 2060	Number of MA watersheds experiencing >10% increase in runoff
Opportunistic Growth	25
Forests as Infrastructure	l

"Forests as Infrastructure" allows for nearly the same amount of development as what we're experiencing now, but 2/3 of it is **clustered** development.

A Different Direction: Greening Your Community

Conserve the natural green infrastructure already providing free ecosystem services Incorporate LID and green infrastructure design into development Restore the resiliency of urban landscapes through LID in redevelopment

Conserve the natural green infrastructure already providing free ecosystem services Integrate LID and green infrastructure designs into current development projects Restore the resiliency of urban landscapes through LID in redevelopment

Integrate

Conserve the natural green infrastructure already providing free ecosystem services Integrate LID and green infrastructure designs into current development projects Restore the resiliency of urban landscapes through LID in redevelopment

Conserve the natural green infrastructure already providing free ecosystem services Integrate LID and green infrastructure designs into current development projects Restore the resiliency of urban landscapes through LID in redevelopment

Benefits of LID Practices

Source: Center for Neighborhood Technology's The Value of Green Infrastructure

Free Ecosystem Services: Free services provided by the natural landscape

For every \$1 invested in land conservation, there is a \$4 Return on Investment in terms of these ecosystem service values

- **Flooding**: Floodplains provide flood protection and reduce infrastructure damage
- **Public Health**: Managing stormwater and reducing retention ponds reduces creation of mosquito habitat
- Air Quality & Public Health: Trees reduce the urban heat island effect, reducing smog creation and resulting asthma occurrences as well as reducing nitrogen dioxide and particulate matter
- Water Quality: Streamside vegetation filters pollutants and reduces erosion
- Water Quantity: Forests and wetlands store water, improve water quality, and recharge groundwater
- **Recreation**: Clean, flowing waters support recreation, including boating, fishing, and swimming while open space provides areas for hiking and biking
- Quality of Life: Open space and street trees create a more enjoyable walking environment, benefiting community connection, health, and economic benefit in downtowns and commercial areas
- **Property Value**: Healthy, mature trees add an average of 10-30% to a property's value

Addressing Regulations

	Addresses	Addresses	Helps with
	Stormwater	Water	Climate
Possible Action	(MS4)	Management	Resilience
		Act Mitigation	
Revise bylaws to allow for Low		•	•
Impact Development	$\mathbf{\mathbf{x}}$	$\mathbf{\mathbf{x}}$	\bigstar
Require porous pavement in			
certain situations, and allow for			$\mathbf{\mathbf{x}}$
curb cuts to improve drainage			
to swales			
Culvert replacements meeting			
stream crossing standards			
Acquire/preserve property for	\checkmark	\checkmark	\checkmark
resource protection			

The Value of Green: Stormwater Infrastructure

Already facing a projected \$18 billion in stormwater upgrades over the next 20 years

Gap in water infrastructure funding over next 20 years, Water Infrastructure Finance Commission, 2012

Blackstone River Coalition Water Quality Monitoring

- Conducted on monthly basis since 2004.
- Volunteers trained to monitor 75 sites from Worcester to Pawtucket.
- Data collected on site conditions including temperature, erosion, and water appearance.
- Tests run for turbidity, nutrients, dissolved oxygen, and conductivity.
- QAPP approved by EPA, MA DEP & RIDEM.

Worcester Area Sites

- Tatnuck Brook
- Kettle Brook
- Beaver Brook
- Broad Meadow Brook
- Ford Brook
- Delaney Brook
- Coal Mine Brook
- Poor Farm Brook

- Sewell Brook
- Middle River
- Leesville Pond

- Dissolved Oxygen: sufficient levels required for aquatic organisms to survive; higher standards set for cold water fisheries like trout.
- Turbidity: from local erosion and off-site runoff; can increase temperature and decrease oxygen, impair plant growth, and harm or kill aquatic organisms.
- Phosphate & Nitrate: Excess levels from storm runoff and point sources can cause algal blooms that reduce dissolved oxygen, leading to fish kills.
- **Conductivity**: Sudden shifts from baseline levels can indicate presence of petroleum or animal waste.

• Bacteria: presence indicates input of animal or human waste; elevated levels are harmful to aquatic life, and impairs drinking water for humans.

Examples of Impaired Water Quality: 2014 Field Season

- Coal Mine Brook Plantation Street, Worcester Nutrient level graded "poor".
- Poor Farm Brook N.E. Cutoff, Worcester, Nutrient level graded "poor".
- Sewall Brook on Holden Street, Shrewsbury Dissolved Oxygen graded "poor".

Hydrologic Budget

Pre-Development

Positive Impact Development

100-Year Design Storms (inches)

	Springfield	Worcester	Boston
TP40 Design Storm (1930 – 1960)	6.5	6.5	6.6
Cornell Design Storm (1936 - 2008)	8.8	8.8	8.8

Hydrology Handbook for Conservation Commissions: Appendix F. Rainfall Data for Massachusetts from Rainfall Frequency Atlas of the United States (TP-40). Users of this Handbook should note that current MA DEP written guidance (see DEP Waterlines newsletter -- Fall 2000) requires the use of TP-40 Rainfall Data for calculations under the Wetlands Protection Regulations and the Stormwater Management Policy. More stringent design storms may be used under a local bylaw or ordinance.

Observed Changes in Storm Intensities

National Climate Assessment 2014

Stormwater Design for Climate Change

25-YEAR, 24-HOUR PRECIPITATION (IN.)				TABLECO	
	TP-40	1971-2000 (Baseline)	2046-2075 (A1b)	2046-2075 (A1fi)	Rainfall Design
+95% c.i.	+95% c.i. most likely" 5.1	7.46	9.53	12.22	Depths from Climate Change for Oyster
"most likely"		5.37	6.86	8.35	River Infrastructure
-95% c.i.	3.85	4.92	5.66	Vulnerability Assessment	

Source: University of New Hampshire

Key Stormwater Regulations

Federal Clean Water Act, National Pollutant Discharge Elimination System (NPDES):

- EPA 2003 MS4 Permits
- EPA General Stormwater Permit (MA) *(expected 2016??)*

Massachusetts Initiatives:

- MA Stormwater Standards (jurisdiction under Wetlands Protection Regulations)
- MA Water Management Act (Sustainable Water Management Initiative, SWMI)
- MA Climate Change Adaptation Report/Regulatory Changes

Local Ordinance/Bylaw/Regulations (required MS4)

Water Quality Degradation: Eutrophication

14:13

Sources of Phosphorus in Stormwater Upper Charles River Watershed

Source	Annual Phosphorus Input (kg yr ⁻¹)	Annual Phosphorus Loading (kg yr ⁻¹)	Percent of Total Load
Turf and Fertilizer Runoff	174.13	24.33	18%
Dog Waste	232.22	23.22	18%
Leaf Litter (Street Trees) Trees)	27.92	20.94	16%
Atmospheric Deposition Deposition	126.19	19.00	14%
Other	unknown	13.08	10%
Forest Runoff	unknown	12.41	9%
Winter Road Treatments Treatments	6.64	6.64	5%
Car Washing	8.03	6.43	5%
Motor Vehicle Traffic	4.01	4.01	3%
Grass Clippings	569.06	1.48	1%
Total	1,148.20	131.54	100%

Conservation Subdivisions

LID Stormwater Management Techniques

- Rain Barrels and Cisterns / Water Re-use
- Stormwater Planters, Tree Planting
- Permeable Paving
- Open Channels
- Bioretention
- Stormwater Wetlands
- Green Rooftop Systems
- Vegetative Buffers
- Infiltration

Permeable Pavement

Rain Barrels and Cisterns Runoff Reduction & Water Conservation

- Downspouts directed to tanks or barrels
- 50-10,000 gallons
- Excess diverted to drywell or rain garden
- Landscaping, car washing, other non-potable uses

Dry Well Infiltration of Roof Runoff

Source: Horsley Witten Group

Source: CWP

Vegetated Swales Conveyance, Treatment, Infiltration

- Roadside swales ("country drainage") for lower density and small-scale projects
- For small parking lots
- Mild side slopes and flat longitudinal slopes
- Provides area for snow storage & snowmelt treatment

Bioretention Applications

• Parking lot islands

Median strips

- Residential lots
- Office parks

Reducing Impervious Surfaces

Rain Garden

Green Roofs

- Stormwater Runoff absorption/collection
- Reduced flooding of and damage to urban streets
- Interior heating and cooling benefits of 10 degrees or more
- Air purification
- Recreational amenity
- Improved aesthetics
- Extended roof life, estimated at 40 years

Stormwater Planters

- Vegetative uptake of stormwater pollutants
- Pretreatment for suspended solids <u>before</u> they reach watertreatment facilities
- Aesthetically pleasing
- Reduction of peak discharge rate

Pet Waste Management

IMPLEMENTATION OF GREEN INFRASTRUCTURE

NYC Program Overview / Disston Park & American Legion Park July 11, 2013

Eric Lienhard, PE Dahlia Thompson, PE Matthew Jones, PE, PhD Richard Claytor, PE Jennifer Reiners, PE

HAZEN AND SAWYER Environmental Engineers & Scientists

Horsley Witten Group Sustainable Environmental Solutions

NYC Green Infrastructure Plan

- I. Build cost-effective grey infrastructure
- 2. Optimize the existing wastewater system
- 3. Control runoff from 10% of impervious surfaces through green infrastructure and other source controls
- 4. Institutionalize adaptive management, model impacts, measure CSOs, and monitor water quality
- 5. Sustain stakeholder engagement

NYC GREEN INFRASTRUCTURE PLAN

NYC GI Design Criteria

Horsley Witten Group Sustainable Environmental Solutions

ROW Bioswale Standard Details

Bioswales in Right of Way

The Value of Green: Redevelopment of Devens, MA

- Army base transformed into modern community
- Requires LID for all new and redevelopment projects, including retention of native vegetation
- Narrower roads and bioswales reduced impervious surfaces and increase infiltration
- Each home has a rain garden to manage its own stormwater runoff

27 Jackson Road

Total Traditional Project Cost:	\$1,004,000
LID Reduced site paving	-\$32,000
LID Reduced curbing	-\$50,000
LID Reduced stormwater piping	-\$14,000
LID Reduced stormwater structures	-\$68,000
LID Increased landscaping	+\$12,000
LID Increased site preparation	+\$10,000
LID Increased soil mix	+\$18,000
Total Estimated LID Savings:	-\$124,000 (12%)

Apex bio-filtration landscape islands

Development Priorities

- New development avoids steep grades to minimize grading impacts
- Formal green at neighborhood core
- natural features
- Connections to trail network and existing pedestrian friendly streets encourage walking
- Connected back to existing neighborhoods – no "gated community"
- Existing trees maintained to highest degree possible
- Civic spaces that can be programmed by residents

The Value of Green: By The Numbers

Traditional paving costs \$5-7/ft². Reducing a just a short two-mile road from 28' to 20' equates to a savings of \$422,400 - \$591,360.

That's *half a million dollars saved* by reducing a short stretch of pavement by just four feet per lane!

When the entire road is shortened for a condensed subdivision instead of sprawling development, that savings grows to the *millions*.

Reduced Clearing & Grading

- A 20-unit development with two-acre lots requires 40 acres to be cleared and graded.
- Conservation subdivisions that preserve 50% of land save \$200,000-300,000, while maintaining the same amount of development.

Benefits of Green Infrastructure & LID

Regulatory

• Assistance in meeting regulatory requirements

Public safety

- Reduced flooding
 - FEMA estimates that 25% of the \$1 billion in annual damages from caused by flooding are linked to stormwater
- Improved water quality
- Increased climate change resiliency
- Reduced urban heat island effect

Quality of Life

• Protect and restore natural features for improved aesthetics

Value

Increased property values 10-30%

Cost Savings

- Reduced development costs for infrastructure and maintenance
- Reduced energy costs for residents
 - One young, healthy tree near a home cools as much as 10 room-size AC units operating 20 hours/day

Leominster Urban Water Quality

- Monoosnoc Brook impacted by phosphorus and other urban runoff issues
- Multiple LID features installed:
 - Bioretention
 - Tree planters
 - Infiltration systems
 - Gravel wetlands

BMP Benefits

Comparison of Nitrogen (N), Phosphorus (P), and Total Suspended Solids (TSS) Reduction:

	Percent reduction:	0	10	20	30	40	50	60	70	80	90	100
	Ν				30-	50%						
Bioretention	Р				30-90%							
	TSS									90%		
Deep Sump Catch Basin	TSS			25%								
Gravel Wetlands	N								75%			
	Р						58%					
Hydrodynamic Separator	TSS				35%							
Infiltration Trench	N						40-70%	,)				
	Р						40-70%					
	TSS									80%		

BMPs By The Numbers

Rain Garden

- \$2-12/ft² installed
- \$200/year in labor for maintenance
- Reduces runoff by 90%
- Reduces N, P, metals, and TSS by 65-90%

Tree Filter

- \$20,000 25,000 installed
- \$200/year in labor for maintenance
- Removes estimated 80% TSS

Source: EEA Project 10-13/319

BMPs By The Numbers

Bioswale

- \$300-500/year in labor for maintenance (varies by size of swale)
- 70% TSS removal credit with adequate pretreatment

Deep Sump Catch Basins

- \$5,000 6,000 installed
- \$200/year in labor for sediment removal & disposal
- 25%TSS removal credit when used for pretreatment

Deep Sump Catch Basin

BMPs By The Numbers

Gravel Wetland

- \$25,000-30,000 per acre of impervious area treated
- \$1,500-2,000/yr. in labor for maintenance and vegetation control
- 80% TSS removal credit with adequate pretreatment
- Varied % removal of nutrients, metals & pathogens

Hydrodynamic Separator

- Total P removal of 10-30%
- TSS removal 35%
- Fine particle removal down to 50 microns

Sediment Vault

- \$15,000 20,000 installed per acre of impervious area treated
- \$400-600 /year for sediment removal & disposal
- 80% TSS removal with adequate pretreatment
- Varied % removal of nutrients, metals and pathogens

LID BMPs at the Linwood Mill Apts.

670 Linwood Avenue Northbridge, MA

Conservation Way, Westford

RIVERWALK - CONCORD, MA

Funding Stormwater Management

There are costs to stormwater management even with LID. Options for funding include:

 Utilities: dedicated funding based on impervious surfaces, incentives to reduce effective imperviousness

www.mapc.org/Stormwater_Financing

 Private commercial/industrial site maintenance and annual reporting requirements (Westboro)

 Regional Stormwater Collaboratives provide efficiencies and cost savings <u>www.centralmastormwater.org</u>

Take Home Messages

- Green infrastructure provides numerous free or low cost services – through both natural and engineered plants and soils.
- We need to treat stormwater and precipitation as a **resource**, not a waste product.
- LID and GI provide several valueadded financial and quality of life benefits for communities of all types – rural, suburban, urban.

Take Home Messages

We can't continue on our current, business as usual path.

- Conservation design, narrow streets, LID drainage need to be the preferred, easy-to-permit development/redevelopment option.
- Does **your** LID bylaw work well with your subdivision and other regulations?

For more information, please visit <u>www.massaudubon.org/LIDcost</u>

- Stefanie Covino, Mass Audubon
 - scovino@massaudubon.org, 508-653-6087
- Eric R. Smith, AICP, CMRPC
 - <u>esmith@cmrpc.org</u>, 508-459-3322
- Scott Horsley, Horsley Witten Group, Inc.
 - <a>shorsley@horsleywitten.com, 508-833-6600
- Peter Coffin, Blackstone River Coalition
 - peter.coffin@zaptheblackstone.org, 508-753-6087

This project was funded by an agreement (CE96184201) awarded by the Environmental Protection Agency to the New England Interstate Water Pollution Control Commission on behalf of the Narragansett Bay Estuary Program.

